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Abstract: Using mathematical models alone to describe the changes in the parameters characterizing
the analyzed reservoir may be insufficient due to the complexity of ocean circulation. One of the
ways to improve the accuracy of models is to use data assimilation based on remote sensing methods.
In this study, we tested the EcoFish numerical model that was developed for the Gulf of Gdańsk
area, under the FindFish Knowledge Transfer Platform. In order to improve the model results and
map local phenomena occurring in the studied water, which would be difficult to simulate using
only mathematical equations, EcoFish was extended with a satellite data assimilation module that
assimilates the sea surface temperature data from a medium-resolution imaging spectroradiometer
and an advanced ultrahigh-resolution radiometer. EcoFish was then statistically validated, which
resulted in high correlations for water temperature and salinity as well as low errors in comparison
with in situ experimental data.

Keywords: FindFish; Gulf of Gdańsk; EcoFish model; satellite data assimilation

1. Introduction

The Baltic Sea is a shallow inland sea connected to the North Sea by narrow (4–28 km
wide) straits. The topography of these straits, and in particular their low depth (around
5–6 m in most shallow points), impedes the free exchange of waters between the Baltic
and the North Sea, causing significant water exchanges between these seas only during
large infusions [1,2]. The Gulf of Gdańsk is the southern part of the Baltic Sea and is less
affected by infusions, but it is exposed to influences from the land. The highly urbanized
and industrialized coast has a huge impact on the environmental conditions of the Gulf in
addition to the waters coming from the Vistula River [3,4]. An additional obstacle in the
exchange of the Bay’s waters with the open sea is the Hel Peninsula. It serves as a natural
land barrier, marking the border between the Puck Bay and the Gdańsk Basin.

The morphometric conditions of the Gulf of Gdańsk favor the heterogeneity in salin-
ity. Visible differences can be observed between the shallow coastal area hydrologically
belonging to the surface layer of the Baltic Sea and the remaining deeper zone of the
gulf [5,6]. However, smaller differences exist between the deep water region of the Gulf of
Gdańsk and the open sea, where a typical for the Baltic Sea, layered water structure can be
observed [7].

Comprehensive understanding and description of processes occurring in water is
possible through the combined use of mathematical models, modern in situ research, and
observational techniques in the form of satellite remote sensing [8–11].
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In order to increase the intensity of knowledge transfer and the use of scientific
potential by fishermen, and consequently contribute to the sustainable development of
fisheries while increasing the protection of the Gulf’s ecosystem, a three-dimensional,
prognostic ecohydrodynamic model named EcoFish was built. The EcoFish model is
configured for the Gulf of Gdańsk area and being developed under the project “FindFish
Knowledge Transfer Platform—Numerical Forecasting System for the Marine Environment
of the Gulf of Gdańsk for Fisheries” [12].The main goal of the project is to create a platform
from which users (in particular fishermen and scientists) will be able to obtain knowledge
and information about the physical and biological conditions of the Gulf of Gdańsk.
The EcoFish model will be an essential tool in achieving this goal.

The most important modeled variables (especially water temperature, salinity, and
dissolved oxygen concentration) that determine the state of the Gulf of Gdańsk ecosystem
will also serve as input data for the Fish Module. Output information from this module,
together with the data on fish preferences and expert knowledge, will allow the creation
of maps of the most favorable environmental conditions for the occurrence of industrial
pelagic fish in the Gulf of Gdańsk region, i.e., herring, sprat, and flounder.

The implementation of the satellite data assimilation module for sea surface tempera-
ture (SST), and also for chlorophyll a later in the biological part, in the EcoFish model will
ensure that the obtained model results will be even more accurate (close to reality) and
the model will correctly reflect the state of the Gulf of Gdańsk environment. In this study,
the results from the EcoFish model were statistically validated.

2. Materials and Methods
2.1. Study Area

The domain of the EcoFish model includes the extended Gulf of Gdańsk (Figure 1),
which is the southern part of the Gdańsk Deep area, located in the Gotland Basin. A straight
line connecting Cape Rozewie with Cape Taran delimits the proper Gulf of Gdańsk. This
line crosses the deepest parts of the Gdańsk Deep, with a maximum depth of 118 m. Along
the coastal zone, there is a wide strip of shallows widening to the west of the mouth of the
Vistula River. The slope of the bottom in the coastal zone is varied. The greatest decline
occurs at the headland of the Hel Peninsula, where the bottom rapidly drops to a depth of
70 m [13].

Figure 1. EcoFish model domain with topography. Numbers 1–13 indicates mouths of rivers
(Section 2.5).

The Bay of Puck is a shallow area of the Gulf of Gdańsk located in its western
part [14,15]. Due to its geographical location and special hydrological conditions, the Bay
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of Puck is a reservoir unique in the scale of the entire Baltic Sea. It owes its specificity to
natural factors: isolation from the sea waters by the Hel Peninsula and separation into two
morphologically and environmentally different zones—the part known as outer Bay of
Puck and the semienclosed, inner part called Puck Lagoon to the northwest.

2.2. EcoFish Model Configuration

EcoFish origins from Community Earth System Model (CESM) coupled global climate
model http://www.cesm.ucar.edu/models/ccsm4.0, accessed on 1 June 2018 by NCAR.
CESM is a state-of-the-art model system consisting of five separate components with
an additional coupler controlling time, exciting forces, domains, grids, and information
exchange between the models. For the purpose of the FindFish project, CESM was down-
scaled and adapted for the Gulf of Gdańsk region for further development at the Institute
of Oceanology, Polish Academy of Sciences.

EcoFish’s horizontal resolution is 575 m (1/192◦). The vertical resolution is 5 m
for each layer with a total of 26 layers (Table 1). The vertical discretization uses the z
formulation and the bottom topography is based on the Baltic Sea Bathymetric Database
(BSBD) from the Baltic Sea Hydrographic Commission [16]. The bathymetric data were
interpolated into the model grid using the Kriging method.

Table 1. EcoFish model vertical resolution.

Model Level Thickness [m] Low-Depth [m] Mid-Depth [m]

1 5.0 5.0 2.5
2 5.0 10.0 7.5
3 5.0 15.0 12.5
4 5.0 20.0 17.5
5 5.0 25.0 22.5
6 5.0 30.0 27.5
7 5.0 35.0 32.5
8 5.0 40.0 37.5
9 5.0 45.0 42.5

10 5.0 50.0 47.5
11 5.0 55.0 52.5
12 5.0 60.0 57.5
13 5.0 65.0 62.5
14 5.0 70.0 67.5
15 5.0 75.0 72.5
16 5.0 80.0 77.5
17 5.0 85.0 82.5
18 5.0 90.0 87.5
19 5.0 95.0 92.5
20 5.0 100.0 97.5
21 5.0 105.0 102.5
22 5.0 110.0 107.5
23 5.0 115.0 112.5
24 5.0 120.0 117.5
25 5.0 125.0 122.5
26 5.0 130.0 127.5

The EcoFish model consists of two active and two passive components. The active
prognostic models are Parallel Ocean Program (POP) and Community Ice CodE (CICE).
The passive components are responsible for providing atmospheric data fields and fresh
water from catchment area. The main part of this system is the ocean model in which
horizontal mixing is represented by biharmonic operator that is implemented by applying
the Laplacian operator twice. It is performed in both viscosity and diffusion schemes;
however, the mixing coefficients are different and equal to −3 × 1014 and 0.3 × 1014,

http://www.cesm.ucar.edu/models/ccsm4.0
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respectively (note: the sign was omitted). Vertical mixing used by authors in EcoFish
system is called k-profile parametrization (KPP) [17]. Shear instability is parameterized in
terms of the gradient Richardson number, while diffusivity (active tracers) and viscosity
(momentum) are parameterized as diapycnal. Each active component has its own time
step. The CICE time step is 10 min and it is equal to the coupling time step. Ocean model
has typically two mods and time step is divided into two parts. The baroclinic part makes
one step in 60 s. Because the model has linear free surface formulation, it is not needed
to make substeps for the barotropic part. CESM is intended for use in global applications;
thus, it was adapted for this purpose. Barotropic equation has been modified for possibility
of assimilation of sea level at the boundaries [18]. Additionally, at the boundary area,
salinity has been forced to have values from external model using restoring. The restoring
time scale is not constant and depends on distance from the boundaries. Exactly at the
boundaries, the restoring time scale is in the range of days and it increases to infinity
toward the center of the domain at a distance of about 20 km (40 model cells). Similar
models were already presented in [18,19].

2.3. Open Boundary

The results from the EcoFish model analyzed in this paper were spatially limited to
the Gulf of Gdańsk area. However, the entire domain of the model is slightly larger and
borders on the west and north with the open Baltic. Therefore, it is necessary to provide
the model with boundary conditions. Apart from water temperature and salinity, it is
necessary to prepare the data of sea surface height and barotropic components of sea
currents. The data to the model boundary are provided by a 3D CEMBS [20,21] model
with a horizontal resolution of 2 km. Since the exact determination of the data range on the
border required trials with different settings, it was decided to prepare data on the entire
FindFish domain, not only on its border. This allows the use of the same data regardless of
the finally adopted settings. The fact that the results of the 3D CEMBS model are used as
the source of boundary conditions means that 3D CEMBS’s calculations must be performed
prior to EcoFish.

2.4. Atmosphere Forcing

At the water–atmosphere border, the EcoFish model is fed with meteorological forcing.
These data come from the UM (Unified Model) developed at the Interdisciplinary Modeling
Center of the University of Warsaw (ICM UW). Parameters directly used as inputs are as
follow:

• 10 m wind speed,
• 2 m air temperature,
• specific humidity,
• sea level pressure,
• precipitation (convective and large-scale),
• downward shortwave and longwave radiation

Missing parameters are calculated by the atmospheric data module, which is an
integral part of the EcoFish model. Air density and scattered and direct shortwave radiation
in the visible and near-infrared range are determined that way.

2.5. River Discharge

Due to the fact that modeling of surface runoff requires the use of a hydrological
model, The Soil & Water Assessment Tool (SWAT) software was used [22–24]. SWAT is a
small watershed to river basin-scale model used to simulate the quality and quantity of
surface and ground water and predict the environmental impact of land use, land man-
agement practices, and climate change. This adaptation of SWAT was developed under
the WaterPUCK—Integrated Information and Prediction Service project [11]. Meteoro-
logical data (precipitation, wind, temperature, and atmospheric pressure) comprise a key
element of any water balance model. The SWAT hydrological model is based on real-time
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observations (local meteorological station) as well as shorter weather forecasts (ICM UW
website). The conversion of rainfall data into surface runoff is accomplished using the
SCS (Soil Conservation Service) Curve Number procedure through the cumulative runoff
volume and concentration time. SWAT covers sedimentation in surface and groundwater,
and the transport model also includes snow cover. Additionally, the transport of nutrients
and pesticides was taken into account for use at a later stage related to the launch of the
biochemical part of the EcoFish model.

The SWAT model was created for six rivers (numbered 8–13) from the described
domain (Table 2). For the remaining seven rivers (numbered 1–7), information on the
runoff volume was taken from the Hydrological Predictions for the Environment (HYPE)
model. It is a physics-based semidispersed catchment model that simulates the flow of
water and substances as they travel from precipitation to discharge into the sea. We used
historical time series from 1980–2010 for the geographic domain of Europe available as daily
averages. Spatial resolution is determined by dividing the land area into catchments for
which the HYPE data represent mean values at the estuary. The volumes for the years 2014
to 2020 have been calculated as the multiyear average over the available 30-year period.

Table 2. Rivers mouths’ locations included within the EcoFish model domain and mean runoff.

Source River Longitude Latitude Mean Runoff [m3/s]

1 HYPE Vistula 18.95 54.35 1064
2 HYPE Bold Vistula 18.78 54.37 2.05
3 HYPE Still Vistula 18.66 54.41 6.06
4 HYPE Oliwski Stream 18.60 54.42 0.31
5 HYPE Kamienny Stream 18.56 54.46 0.45
6 HYPE Kacza 18.56 54.48 0.29
7 HYPE Ściekowy Canal 18.51 54.61 0.21
8 SWAT Zagórska Stream 18.47 54.63 0.11
9 SWAT Reda 18.47 54.64 0.48
10 SWAT Mrzezino Canal 18.46 54.66 0.20
11 SWAT Gizdepka 18.46 54.66 0.30
12 SWAT Żelistrzewo Canal 18.45 54.70 0.17
13 SWAT Płutnica 18.39 54.72 0.91

2.6. Simulation Run

The EcoFish model was validated using the results of a seven-year simulation from
1 January 2014 to 31 December 2020, preceded by a two-year model spin-up. This run
was calculated using the above-described model configuration with satellite data assim-
ilation for surface temperature. Results were recorded four times a day as 6-h averages.
The simulation results and model validation are presented in Section 4.

Additionally, in order to verify the correctness of the assimilation module itself,
the same simulation was carried out without the assimilation of satellite data for the
surface temperature. Both runs were then compared against satellite data.

2.7. Data Sets Used for Evaluation

Two in situ databases were used for the statistical analysis of the EcoFish model.
Detailed descriptions are provided below.

2.7.1. ICES

The main in situ database that was used to validate the water temperature and salinity
in the EcoFish model is the hydrochemical database provided online by the International
Council for the Exploration of the Sea (ICES) via the https://ocean.ices.dk/HydChem/,
accessed on 1 Febuary 2021 website. 17,902 measurements from 2014 to 2019 were used for
comparison. Data for 2020 was not yet available in the database at the day of this validation.

 https://ocean.ices.dk/HydChem/
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Most of the data was from 2014 (6130 measurements) and 2015 (6848 measurements).
From 2016 to 2019, 1055 to 1444 measurements per year were available. ICES measurements
covered almost the entire domain (Figure 2), except its eastern part, which covers areas
along the Vistula Spit to the easterly coast of Gulf of Gdańsk. The region with the densest
measurement grid was the strip along the 19◦E meridian.

ICES measurements were relatively uniformly distributed throughout the water col-
umn. In the surface layer from 0 to 5 m, 1082 measurements were available, in the layer
from 5 to 30 m—5429, in the layer from 30 to 80 m—8987 and 2404 measurements for
depths greater than 80 m.

Figure 2. Locations of in situ data collected with the MIDAS CTD instrument during cruises and data
from the ICES database used to validate the EcoFish model. Rectangles mark the regions (HP—Hel
Peninsula, GD—Gdańsk Deep, VR—Vistula River) used in the description of the sea currents.

2.7.2. Fishing Cruises

We had an additional database that was used to validate the model. It was a set of
measurements taken under the FindFish project during fishing cruises. Valeport MIDAS
CTD model 500 and GPS 73 Worldwide by GARMIN were used for this purpose. Record-
ing of physicochemical data was carried out during fishing with towed and set gears.
The following parameters were saved in the device memory:

• water temperature,
• salinity,
• pressure,
• turbidity,
• saturation,
• pH.

Data from the MIDAS CTD instrument were collected in the area north of the Vistula
River mouth and in the strip in the open sea, parallel to the Hel Peninsula (Figure 2).
The measurements have a high temporal and spatial resolution. Therefore, they were aver-
aged to match the model mesh. After this operation, we had 15,312 records. The highest
density of measurements (8533 values) were from 30 to 60 m deep layer. It was closely
related to the optimal fishing depth. The first data was collected on 22 May 2018 during
pelagic fishing. To date, 422 hauls/releases have been made, of which 306 were harvested
with towed gear and 116 with set gear. Most of the data was collected in 2020 (7293 mea-
surements) and 2019 (5954 measurements). The remaining 2065 measurements were taken
in 2018. The months with the highest amount of data collected were April (3150) and
March (2395). Measurements were taken from the decks of 10 vessels, and the schedule of
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their cruises was determined on an ongoing basis in relation to the frequency of occurrence
of fish species being the target of the catch. In addition, meteorological data were also
recorded, including air temperature, wind strength and direction, cloud cover, and sea
state, which were collected in the form of questionnaires completed by skippers.

3. Assimilation of Satellite Data in the EcoFish Model
3.1. Satellite Data Acquisition and Processing Module

The satellite sea surface temperature data (SST) used along with EcoFish model come
from the SatBałtyk project database [8,9] and are based on measurements from a medium-
resolution imaging spectroradiometer (MODIS AQUA) and an advanced ultrahigh-resolution
radiometer (AVHRR). These data are calibrated to local conditions in the Baltic region
and subjected to atmospheric correction and filtration. Raw maps are linked in space,
geometrically corrected for changes in satellite position, and radiometrically corrected
in case of numerical errors in data transmission. Data in the SatBałtyk system have a
horizontal resolution of 1 km and cover the entire area of the Baltic Sea. Daily average
values obtained from the combination of all satellite images available on a given day are
used for assimilation. Assimilation takes place during the assimilation window with the
peak of the window set to 12:00. This is taken into the account during the process of
combining data using weighted averaging. The data acquisition management module
automatically detects the presence of new data, downloads new files to a local storage,
processes the data, and saves the result together with control files and metadata. Data
processing consists of their interpolation onto the 575 m grid of EcoFish model and saving
in the file format compliant with the model requirements. Thanks to the aforementioned
control files, the module managing the entire system can monitor the status of satellite data
on an ongoing basis and, if available, start assimilation.

3.2. Satellite Data Assimilation Module

The assimilation module is based on modified and extended CESM model [25,26]
components that are an integral part of the EcoFish model. This allowed for smooth
introduction of satellite information to computed data with each time step. In addition,
it allowed the reuse of a number of settings and functionalities already available in the
CESM, e.g., parameterization of the length of the assimilation window currently set to 24 h,
the frequency of assimilation (each time step) and the modules for reading and processing
data by the model. The method of assimilation selected in the EcoFish model takes as input
the values of a given variable Vmod obtained from the calculations of the model and satellite
measurements Vsat. Moreover, the method accepts a number of parameters that control its
behavior and describe the data source. The most important of them are:

• data_type—allows you to specify the frequency with which data for assimilation
appears, e.g., annually, monthly, every N hours [value used: N hours].

• data_inc—in the case of data appearing every N hours, specifies the number of N
[value used: 24].

• interp_freq—determines how often information from assimilated data is entered into the
model calculations, e.g., every N hours, every time step [value used: every time step].

• interp_type—defines the way in which assimilation data are interpolated between the
frequency resulting from data_type and the one resulting from interp_freq. The pos-
sible options are nearest neighbor algorithm, linear interpolation, and third-order
polynomial interpolation using the four nearest points on the timeline [value used:
Linear].

• interp_inc—parameter specifying the frequency with which the differences between
the model and measurement data are calculated [value used: 1 h].

• restore_tau—this is a parameter that specifies the time after which the model results
should reach a value consistent with the measurement data [value used: 0.1 day].

With each calculation step, each assimilation module checks, on the basis of the
data_type and data_inc parameters, whether new assimilation data should appear in a given
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step. If so, it loads the next file with assimilated data Vsat. For the sake of example, let us
assume that data appears every 24 h. Of course, these data should not be entered into the
model at once, in one time step, as this would disrupt the continuity of equations and the
equilibrium of the system. Hence, using the interp_freq parameter, one can choose that the
data should be entered gradually, e.g., every 0.5 h. Using the restore_tau parameter, one can
specify that the model should reach the assimilated values after a period of 12 h. Having
these parameters, the module divides the current difference between Vsat and Vmod into the
number of steps resulting from interp_freq that fall within the restore_tau period, i.e., in this
case by 24.

dVstep = (Vsat − Vmod)/(restore_tau/interp_ f req) (1)

= dV/(restore_tau/interp_ f req), (2)

Here, dVstep is a partial increment introduced to the model in a given assimilation step
(0.5 h in this example). The value of a given model variable depends on many factors, e.g.,
transport, radiation, biological processes, etc. Therefore, the difference dV calculated at the
beginning between the model data and the measurement data must be constantly corrected
to obtain the expected value at the end. Hence, it is updated at the frequency specified by
the interp_inc parameter. The resulting value of the assimilated variable is calculated by
adding the calculated increment to the model result:

Vassim = Vmod + dVstep, (3)

The figures below present the application of the satellite data assimilation module
in the EcoFish model for two selected days from the simulation period. On the left side,
one can see the satellite image for the surface temperature, in the middle, the model result
with visible effect of assimilation, and on the right side, the results from the model version
without the assimilation. The first scene (Figure 3) was taken on 28 April 2019. On that
day, due to the heavy cloud cover, the satellite image was severely restricted and provided
information only about a small area within the domain (Figure 3a). As a result of the
assimilation module, the surface temperature in the vicinity of the Hel Peninsula and the
eastern coast of the Gulf decreased, which can be seen in the Figure 3b. Figure 3c shows
the surface temperature from the version of the model without the assimilation.

Figure 3. Application of the satellite data assimilation module in the EcoFish model for 28 April
2019. On the left, (a) a satellite image of the surface temperature. In the middle, (b) the result from
the EcoFish model with a visible effect of assimilation. On the right, (c) the result from the EcoFish
model without assimilation.

In the next figure (Figure 4) for 3 May 2019, the satellite image is more complete and
almost the entire visible domain has been assimilated.
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Figure 4. Application of the satellite data assimilation module in the EcoFish model for 3 May 2019.
On the left, (a) a satellite image of the surface temperature. In the middle, (b) the result from the
EcoFish model with a visible effect of assimilation. On the right, (c) the result from the EcoFish model
without assimilation.

4. Results
4.1. EcoFish Model Validation

The accuracy of the EcoFish model results, in the period from January 2014 to Decem-
ber 2020, for water temperature (Section 4.1.1) and salinity (Section 4.1.2) was checked by
comparing them with available in situ observations from the ICES database and measure-
ments made with the MIDAS CTD instrument during fishing cruises. This was conducted
for the two versions of the EcoFish model—one with the assimilation module enabled
(EcoFish+A) and one without assimilation (EcoFish−A). The most important statistical
quantities were determined, such as Pearson’s correlation coefficients (r), root mean square
errors (RMSE), standard deviations (STD), and biases (in relation to means), which illustrate
the tendency of the model to systematically overstate or underestimate the result.

4.1.1. Water Temperature

At first, we wanted to verify the impact of the assimilation of satellite SST module
itself. Therefore, the surface temperature was validated for 2018 using two separate
versions of the EcoFish model—one without (EcoFish−A) and one with satellite data
assimilation (EcoFish+A). All other model parameters were identical. Results from both
runs were then compared against assimilated satellite data. Table 3 provides a statistical
summary of the temperature obtained from all three sources to give a better overview of its
characteristics. Table 4 contains comparison of both model versions against satellite data
used for assimilation.

Table 3. Statistical description of SST from model and satellite.

Source Mean [◦C] Median [◦C] STD [◦C]

Satellite 12.55 13.24 6.39
EcoFish−A 11.42 11.83 5.67
EcoFish+A 11.99 12.42 6.16

Table 4. Statistical verification of SST from model calculations vs. satellite measurements.

Source Pearson’s r RMSE [◦C] Bias [◦C]

EcoFish−A vs. Satellite 0.95 2.31 −1.12
EcoFish+A vs. Satellite 0.98 1.45 −0.56

As one can observe, the differences between model and the satellite are larger in case
of the model without assimilation (Table 4). Pearson’s correlation coefficient (r) increased
from 0.95 to 0.98. The root mean square error (RMSE) decreased by almost 1 ◦C from
2.31 ◦C to 1.45 ◦C, and the tendency of the EcoFish model to systematically underestimate
the results by −1.12 ◦C for the nonassimilated version decreased to −0.56 ◦C for the
assimilated version. This confirms that the assimilation mechanism itself was designed
and implemented properly and it yields significant changes in obtained results. It is worth
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noticing that the assimilation does not result in 100% agreement between satellite and
model data. This can be contributed to several factors. Most importantly, in order to save
disk space, results saved by the model are averaged over the period of 6 h. Satellite data
are also averaged over the assimilation period, but the assimilation is designed to have
the peak alignment of the data precisely at 12:00. Apart from that, the model surface layer
is much thicker than the surface layer measured by satellites. Because of that, it would
be wrong to exactly replicate satellite results in the model. The assimilation module is
parameterized to leave some level of freedom between model and satellite data. Last,
one must take into the account that even though satellite data are assimilated with every
time step, each water cell in the model is subjected to vertical and horizontal currents that
dissipate the assimilated information. Given the above, obtained results are satisfactory
and prove that the assimilation module works as expected.

In order to additionally emphasize the impact of assimilation on the improvement
of the model results, a separate comparison of the temperature in the surface layer itself
(from 0 to 5 m) with the data from the ICES database was made. For the surface, within the
model domain, 1082 observations from the ICES database were available. The result of this
analysis is presented in the Taylor diagram (Figure 5) in the form of normalized statistical
coefficients. Absolute statistical values are presented in tabular form (Table 5).

Table 5. Statistical comparison of modeled surface temperature with the reference data from ICES.

Database Pearson’s r RMSE [◦C] STD [◦C] Bias [◦C]

ICES (EcoFish+A) 0.99 0.70 5.75 0.01
ICES (EcoFish−A) 0.99 0.93 5.32 −0.40

Figure 5. Taylor diagram for surface temperature from EcoFish model with (TEMP+A) and without
(TEMP−A) assimilation versus ICES database.
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The ability of the EcoFish model (with an active SST satellite data assimilation module
and without) to correctly project the real environment conditions was verified by comparing
the model results for temperature with all available observations at all depths. The result of
this validation is presented in the Taylor diagram [27] (Figure 6) in the form of normalized
statistical coefficients. Absolute statistical values are presented in tabular form (Table 6).

Table 6. Statistical comparison of modeled temperature on all depths with the reference data from
ICES and MIDAS CTD.

Database Pearson’s r RMSE [◦C] STD [◦C] Bias [◦C]

ICES (EcoFish+A) 0.94 1.33 3.66 −0.36
ICES (EcoFish−A) 0.95 1.22 3.52 −0.28

MIDAS CTD (EcoFish+A) 0.87 1.83 3.57 −0.34
MIDAS CTD (EcoFish−A) 0.85 2.03 3.84 −0.25

Figure 6. Taylor diagram for temperature and salinity using all available in situ data.

The Pearson correlation coefficient (r) calculated between the assimilated model
(EcoFish+A) and the data from the ICES database was 0.94. When compared with data
from fishing cruises using the MIDAS CTD instrument, it took the value of 0.87. The decline
may be related to the varying density of in situ data from surface to bottom. ICES data
was relatively homogeneously distributed in the water column, while the cruise data most
often occurred at fishing depths, i.e., 30 to 60 m. Due to the use of assimilation, the model
better reflects the temperature closer to the surface, as indicated by high correlations that
slightly decrease with depth.

Table 6 shows also that when comparing to ICES data, a nonassimilated version of
the model (EcoFish−A) produced slightly better statistics than the assimilated version
(EcoFish+A). This might be related to the database itself and should not be taken as a
sign that assimilation worsened the results. It is opposite in the case of MIDAS CTD
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data in which statistics for EcoFish+A are better than for the version without assimilation.
Summarizing, high correlations and low RMSEs were recieved from both versions of
the model.

The mean square error (RMSE) for EcoFish+A is 1.33 ◦C when compared with ICES
data and 1.83 ◦C when compared with cruise data. The model has a similar bias for both
in situ databases of −0.36 ◦C and −0.34 ◦C, respectively. This means that the model tends to
systematically underestimate the results slightly. The standard deviation for both databases
used during the validation is similar and amounts to 3.66 ◦C for ICES data and 3.57 ◦C for
data from the MIDAS CTD instrument (Table 6).

When analyzing the vertical profile (Figure 7), created while taking all observations
from the ICES database into account, compared to the corresponding values from the
EcoFish model (with and without assimilation), a high correlation can be seen, lasting from
the surface up to about the 13th level of the model (to a depth of 80 m).

Figure 7. Temperature vertical profile for all ICES observations compared with EcoFish values.

Below the 13th level, the data are less correlated and the EcoFish model has a tendency
to slightly underestimate the results. The reason for this is that the POP model has KPP
implemented for surface layer only. Since it is designed for global issues, the vertical
mixing scheme has been modified for better representation of surface layer in the Baltic
Sea. Small changes of the interior shear mixing, suggested by Durski et al. [28], have been
introduced. For better reproduction of the bottom layer, the dependence of the quadratic
drag formula on thickness of the lowest model cells was applied (the logarithmic profile of
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roughness height). There is no turbulent closure though that will cover the bottom layer,
which results in the underestimation of temperature (Figure 7) and salinity (Figure 8) in
the bottom layers.

The most important thing is that the model correctly reflects the temperature drop
in the thermocline layer (on average from the 3rd to the 9th depth level). Not only is a
high correlation visible, but close and overlapping ranges of the double standard devia-
tions are also visible. Only below the 7th level (below the depth of 35 m) are the model
data characterized by a smaller standard deviation than the observational data from the
ICES database.

Therefore, it can be concluded that, despite the slight discrepancies between the model
results and the observations (mostly at greater depths), the vertical mixing in the EcoFish
model has been correctly implemented, and the model itself reflects real conditions well.

4.1.2. Salinity

Another physical variable derived from the EcoFish model that we validated is salinity.
Salinity is a good parameter to check if the model is capable of handling water masses,
as it does not undergo any transformations (gains and losses) in the marine environment.
Salinity results from both versions (with and without assimilation) of the model were
compared with available in situ observations from the ICES database using the same
locations as for temperature (Figure 2). The result of this comparison is presented in the
Taylor diagram (Figure 6) in the form of normalized statistical coefficients, as well as in the
form of absolute values in table (Table 7).

Table 7. Statistical comparison of modeled salinity with the reference data from ICES.

Database Pearson’s r RMSE [PSU] STD [PSU] Bias [PSU]

ICES (EcoFish+A) 0.94 0.80 1.27 −0.01
ICES (EcoFish−A) 0.92 0.91 1.20 0.01

The Pearson correlation coefficient (r) calculated between the model data (EcoFish+A)
and the observations from the ICES database took the value of 0.94, which is better than in
the case of the nonassimilated version of the model. The root mean square error (RMSE)
was 0.8 PSU; this is a satisfactory result, while having relatively large standard deviation
of 1.27 PSU. The model has a low negative mean bias of −0.01 PSU, which could signify
that it responds well to changes in salinity. However, this is largely due to the fact that
at low and medium depths (from the surface to about 14th level), the model results for
salinity are slightly higher than the ICES observational values, followed by a trend that
reverses. At higher depths, the model begins to underestimate salinity from about 0.5 up
to 2.0 PSU. This was demonstrated on a vertical salinity profile (Figure 8) created using all
observations from the ICES database.

When analyzing the vertical profile, several characteristic zones in the water column
can be seen. On the surface, we observe an increased standard deviation, both for model
data and observations. It is the result of mixing fresh waters from river runoff with
sea waters, causing increased salinity dynamics on the surface. Then, between 10 and
40 m deep (up to 60 m depending on the location), the isohaline layer stretches, which
is noticeable both at a constant average salinity of about 7–8 PSU and the size of the
standard deviation, which in this layer is the smallest throughout the entire water column.
Below 35 m, the STD begins to rise gradually, reaching about 2 PSU by 70 m and remaining
at this value to the bottom. Below the isohaline layer, there is a transition layer with a
clearly delineated halocline, especially for the curve determined using ICES observations.
Average salinity starts to increase systematically from about 55 m (11th level) and stabilizes
only at a depth of 100 m (20th level). The curve determined using the model data also
shows the presence of a halocline, but it is not so clearly marked. The model results do
not have the same dynamics as in situ data, which is especially visible in a much smaller
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STD than in the case of observations. In the water layer from the 12th level to the bottom,
the salinity obtained from the EcoFish model increases from about 9 PSU to 12 PSU, while
the increase in salinity for the experimental data is greater and goes from 8 PSU to 13 PSU
(Figure 8). The highest salinity values seen in the experimental data can be related to the
infusion effect, while decreases can occur during periods of long-term stagnation.

Figure 8. Salinity vertical profile for all ICES observations compared with EcoFish values.

4.2. EcoFish Model Simulation Results

In this section, we present the average monthly temperatures, salinity, sea surface
height, and currents in the surface layer for EcoFish model with an active SST satel-
lite data assimilation module. The averages reflect the simulation period from 2014 to
2020. The results for individual months have been transferred to the Appendix A section
(Figures A1–A8 and Tables A1–A23). Additionally, figures with the differences between
the monthly averages of parameters from the models with (EcoFish+A) and without
(EcoFish−A) assimilation are presented.

4.2.1. Water Temperature

The model domain is characterized by a strong seasonal variability of the surface tem-
perature (Figure 9) for each year from the seven-year simulation (2014–2020). The greatest
dynamics occurs in the southern part of the domain, which includes the southern part of the
Gulf of Gdańsk and the Bay of Puck, which has the greatest number of low-depth coastal
areas that react quickly to atmospheric forcing. The remaining regions are characterized by
relatively lower seasonal variability of the surface temperature.
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The mean water surface temperature for the entire analyzed model domain was
10.43 ◦C. The months with the lowest average temperature are generally February and
March, and the coldest month in the simulation period was March 2018 with an average
temperature of 2.05 ◦C. The warmest months are usually the summer ones, i.e., July and
August with the record-breaking August 2018, in which the average water temperature in
the surface layer reached 21.23 ◦C (Figures A1 and A2 and Table A1).

Temperature extremes for single model cells were most common in shallow coastal
regions. The most characteristic is the shallow inner Bay of Puck called Puck Lagoon
(Figure 1), which is not only separated from the open sea by the Hel Peninsula, but in
its eastern part, there is a characteristic bathymetric anomaly in the form of shallow
water (marked with curved dashed line), which additionally limits the exchange of water
masses with the outer Bay of Puck (and whole Gulf), influencing to local temperature
extremes. The lowest temperatures were in January and February 2014, falling to −0.43 ◦C
(Table A2), and the highest were in July 2014 and 2018, when the temperature exceeded
28 ◦C (Table A3).

The lowest standard deviations ranging from 0.34 ◦C to 0.81 ◦C (0.53 ◦C on average)
were obtained by the model for February and March. It is the period before spring when
the surface layer is cooled down after winter, and both air temperature and sunlight do
not yet reach high values to cause significant local changes. The largest deviations from
the mean surface temperature appear in May and June (1.22 ◦C to 3.11 ◦C) with values
exceeding 3 ◦C in May 2017 and 2018 (Table A4).

Figure 9. Monthly mean surface temperature for the entire model domain. Error bars represent
extreme values. The shaded area represents standard deviation.

The picture below (Figure 10) presents the average monthly surface temperature
for the period 2014 to 2020. It can be seen that there are four characteristic periods of
temperature variation in the domain. The longest, five-month cold period, lasting from
December to April, when the average surface temperature is low and relatively stable,
ranging only from about 3 ◦C to 7 ◦C. Then, a four-month warm period lasting from June
to September with average temperatures ranging from about 15 ◦C to 19 ◦C. There are also
two transitional periods. The first transition (uptrend) period is May, when the temperature
rises sharply from 5 ◦C in April to 15 ◦C recorded in June. The second transition period
(downward) is October and November, when the water cools down quickly from an
average of 17 ◦C in September to 6 ◦C in December (Table A1).

The reservoir that responds most quickly to external factors is the aforementioned
Puck Lagoon. Thanks to its specific location and bottom topography, it has the greatest vari-
ability of the surface temperature and the minimum and maximum temperature achieved.
In winter, local ice cover is observed, while in summer, it is exposed to toxic algae blooms
stimulated by high temperatures and the deposition of inorganic phosphate from rivers.
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Figure 10. Average monthly water temperatures for the surface layer in 2014–2020.

Looking at Figure 11, that shows the difference in the monthly average SST values
between the model with (EcoFish+A) and without assimilation (EcoFish−A), it can be seen
that the assimilation influences the increase of the temperature in the warm season (from
May to August) and the decrease in the cold one (from October to January). It is related to
the vertical resolution of the model, and more precisely to the thickness of the first (surface)
layer, which is 5 m.

It is more than the actual surface layer for which the SST is measured from satellite
instruments. A thicker layer responds slower to atmospheric forcing, as it has a higher
heat capacity. Assimilation of the satellite data into the model adjusts the surface layer
temperature to the atmospheric conditions faster; hence, it responds faster to the changes.

Figure 11. Average monthly water temperature differences for the surface layer in 2014–2020 between
two versions of the model: with and without SST assimilation enabled.

4.2.2. Salinity

During the seven-year-long simulation, the average monthly salinity in the surface
layer was between 7.31 PSU and 7.76 PSU, which gives an average of 7.47 PSU for the
entire time period (Figures 12 and 13). The annual course of salinity in the study area
is usually established assuming lower values in the warm/summer months (minimum
for April 2014) and higher values in the cold/winter season (maximum in February 2014)
(Figures A3 and A4 and Table A9).
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Figure 12. Average monthly salinity for the surface layer in 2014–2020.

Figure 14 shows that there are differences in surface salinity distribution when compar-
ing models with and without SST assimilation. The model with assimilation (EcoFish+A)
gives almost 1 PSU higher salinity in the south area of Gulf of Gdańsk from May to August.
The reason for that is the increase in water circulation (Section 4.2.4 ) leading to more salty
waters located in the deeper bottom layers being transported to the surface as a result of
mass conservation law.

Figure 13. Average monthly surface salinity for the entire model domain. Error bars represent
extreme values. The shaded area represents standard deviation.

The lowest seasonal fluctuations in salinity occur in the open sea, which is confirmed
by small standard deviations (Table A12), rarely exceeding 0.3 PSU. In the southern part
of the domain, which includes the mouth of the Vistula River, salinity can fluctuate from
about 2 PSU to even 8 PSU in the summer months (Figure 13). The lowest salinity recorded
in the model for the simulation period, amounting to 1.51 PSU, was recorded in March
2014 (Table A10). It was the result of the spring rise and runoff from the Vistula River.
The highest of 8.70 PSU was obtained for January 2018 at open sea (Table A11).

Figure 14. Average monthly salinity differences for the surface layer in 2014–2020 between two
versions of the model: with and without SST assimilation enabled.

The dynamics of changes in salinity along the surface layer is influenced by a number
of factors. Among others, it is the amount of river runoff, seasonal changes in the thermal
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structure of water or changing meteorological conditions. However, in the bottom layer,
the salinity distribution over the year seems to be relatively uniform, strongly related to the
bathymetry (Figure 15). The highest salinity at the bottom (12.66 PSU on average) occurs
in areas of great depth, in particular in the Gdańsk Deep. Possible fluctuations there, are
no longer the result of cyclical processes with a seasonal frequency, but rather, of irregular
events such as sea inflow. Only in 3 out of 84 considered months, the average monthly
salinity at the bottom exceeded 13 PSU (Table A15). This situation occurred in March 2014
(13.04 PSU), September 2017 (13.15 PSU) and November 2015 (13.19 PSU).

Figure 15. Average monthly salinity for the bottom layer in 2014–2020.

4.2.3. Sea Surface Height

The lowest values of sea surface height determined in the model were −29.58 cm in
November 2015 and −31.09 cm in October 2016 (Table A18). The highest, 60.19 cm and
77.21 cm, were obtained for March 2020 and January 2015, respectively (Table A19).

The average sea surface height was 1.50 cm (Figure 16 and Table A17). Individ-
ual monthly averages are characterized by higher standard deviations (between 4.96 cm
and 6.47 cm) in the months from October to February (Table A20). In the remaining
months, the average standard deviations are usually smaller and reach values of about
3 cm (Figure 17).

Figure 16. Average monthly sea surface height in 2014–2020.

Figure 17. Average monthly sea surface heights for the entire model domain. Error bars represent
extreme values. The shaded area represents standard deviation.
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The process of SST assimilation has minor but noticeable influence on sea level
(Figure 18). The increase of salinity in the coastal area (Figure 14) results in higher density,
which has direct impact on pressure distribution. Therefore, an increase in salinity causes a
decrease in sea level, keeping the hydrostatic balance of the system.

Figure 18. Average monthly sea surface height differences in 2014–2020 between two versions of the
model: with and without SST assimilation enabled.

4.2.4. Currents

The spatial distribution of sea currents inside the domain is much more characteristic
and repeatable than in the case of sea surface height. The average current velocity in
the surface layer for 2014–2020 was 6.73 cm·s−1 with an average standard deviation of
5.23 cm·s−1 (Figure 19 and Tables A21 and A23). The strongest currents were obtained for
December 2016 and January 2015 and reached the speed of 104.45 cm·s−1 and 120.09 cm·s−1

(Table A22), respectively.

Figure 19. Average monthly currents velocity on the sea surface for the entire model domain. Error
bars represent extreme values. The shaded area represents standard deviation.

Inside the domain, a characteristic area can be distinguished in which the strongest
currents exceeding 20 cm·s−1 were modeled. It is a coastal strip stretching along the entire
Hel Peninsula from the open sea (Figure 20).

Figure 20. Average monthly currents in the surface layer in 2014–2020.
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This is also an area of frequent coastal upwelling, which causes cold water masses to
rise from the bottom to the surface. The process responsible for this phenomenon is the
Ekman transport, associated with the persistence of the southeastern wind running along
the Hel Peninsula. For example, the August 2015 current map (Figure A8) shows a strong
northwesterly current along the peninsula due to winds blowing in August, resulting in
upwelling. The surface temperature map from 25 August 2015 (Figure 21) shows a large
horizontal gradient. Gradients observed in this region are often reaching up to 5 ◦C·km−1 [29].

Figure 21. Surface temperature on 25 August 2015 with visible upwelling.

Temperature has a direct effect on the density of water, and the density becomes lower
as the temperature increases. As the result of such modification, the same wind stress
gives stronger currents because of the second law of dynamics, which is presented as the
difference between assimilated and nonassimilated sea currents (Figure 22). Consequently,
bigger sea currents increase water circulation in the coastal areas of Gulf of Gdańsk.

Figure 22. Average monthly currents differences for the surface layer in 2014–2020 between two
versions of the model: with and without SST assimilation enabled.

Images of current roses in the surface layer for selected three characteristic regions
within the domain (Figure 2) are presented below.

The VR region (Vistula River) covers the coastal and shallow, southern part of the Gulf
of Gdańsk within the mouth of the Vistula River. Monthly averages of surface currents in
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this area rarely exceed 16 cm·s−1 (Figure 23). In this region, eastern currents constitute the
dominant part of directions. In the months from December to April, they have 39% and a
greater share of all directions. Such current direction causes that the water flowing out of
the Vistula has a difficult outflow and is distributed to the east along the shore of the Gulf.
The long-term presence of such currents limits the spread of river waters and reduces the
zone of fresh and sea water mixing.

Figure 23. Rose of sea currents in the surface layer for the VR region (Vistula River)—monthly averages.

In the GD region (Gdańsk Deep), which covers the deepwater area of the domain,
located directly above the Gdańsk Deep, both the distribution of average velocities and
directions is much more homogeneous than in the case of other regions (Figure 24). This is
due to the high variability of wind directions and velocities over this area. Moreover, due
to the great depths occurring here, the bathymetry does not have such a strong influence
on the distribution of currents as in the case of areas close to the coast. From November to
February, statistically more often there are currents heading in the eastern, northeastern
and southeastern directions (about 60% of cases), but in the remaining months, the situation
is less diversified. For example, in the summer months (from June to September), the south-
east, south and southwest are dominant directions. They account for 48.6% in June, 57%
in July, 58.3% in August, and 53.6% in September. In this region, the average monthly
current speeds are comparable to those obtained for the VR region. Currents with speeds
in the range 4–16 cm·s−1 often constitute even 60–70% of all velocities here. Moreover,
in each month, a small share of current velocities exceeding 16 cm·s−1, and sometimes
even 24 cm·s−1, can be found.
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Figure 24. Rose of sea currents in the surface layer for the GD region (Gdańsk Deep)–monthly averages.

In the model results for HP (Hel Peninsula) region, we observe the highest average
monthly current velocities in the entire domain (Figure 25). Average values exceeding
24 cm·s−1 appear here every month and constitute from 3 to 22% of all speed ranges.
The directions of surface currents are specific in this region. In each month, the dominant
directions are northwest (prevailing in the warm months, from May to November) and
southeast (in other months). Together, they constitute over 60% of all currents in each
month. Such structure of surface currents enables rapid movement of water masses
along the Hel Peninsula, mixing together the Gulf of Gdańsk and Baltic Proper waters.
The surface current distribution in the vicinity of Hel Peninsula is mostly induced by
dominating westerly winds [30], but also depends on the large-scale internal water cycle in
the Baltic Sea [31].

The current velocities in the bottom layer along the VR and HP regions rarely exceed
4 cm·s−1. Only in GD they have a higher share of over 10%, especially from October to
February. The rose of currents for the Gdańsk Deep indicates the existence of a dominant
northern bottom current (Figure 26). This suggests that the waters at the bottom are
most often pushed toward the Gotland Basin. On the monthly average maps (Figure A9),
from December to March, however, the dominance of the southern current can be observed.
It moves the water masses in the shallow-water direction of the southern part of the Gulf
of Gdańsk.
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Figure 25. Rose of sea currents in the surface layer for the HP region (Hel Peninsula)—monthly averages.

Figure 26. Rose of sea currents in the bottom layer of the Gdańsk Deep—annual average.

5. Discussion

This paper presents the hydrodynamic part of the three-dimensional numerical model
EcoFish. The model has been used to simulate the hydrodynamics of the Gulf of Gdańsk.
EcoFish has a satellite data assimilation module for SST, which uses data from the SatBałtyk
project database, consisting of photos from a medium-resolution imaging spectroradiome-
ter (MODIS AQUA) and an advanced ultrahigh-resolution radiometer (AVHRR). The task
of this module is to assimilate the available surface temperature satellite data into the
model domain in order to improve the simulation results, allowing for better determination
of the dynamics of changes in physical parameters. The EcoFish model covers the South
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Baltic Sea and, more precisely, the entire Gulf of Gdańsk together with the Bay of Puck.
The model domain is connected via an open boundary with the Baltic Sea from the west
and the north.

The article presents statistical validation of the EcoFish model, which allowed to verify
the correctness of the results obtained from it in terms of seasonal and spatial variability
of the simulated water temperature and salinity. For this purpose, the available in situ
observations from the ICES databases were used, along with the database created during
fishing cruises carried out under the tasks of the FindFish Knowledge Transfer Platform.
For the entire analyzed simulation period from January 2014 to December 2020, basic
statistical values were determined, such as root mean square errors (RMSE), standard
deviations (STD), and Pearson correlation coefficients (Section 4.1).

The validation showed that the EcoFish model results for water temperature were
consistent with in situ observations. To confirm this, two experimental databases were
used. Almost 18,000 measurements were available in the ICES database, distributed
relatively evenly throughout the domain, except for the shallow region along the coast
where no monitoring was carried out, or at least data from this region were not publicly
available (Figure 2). The correlation of the EcoFish model with these data (ICES) was
0.94 with the root mean square error (RMSE) of 1.33 ◦C. As a result of comparing the
modeled temperature against the data from the database created during fishing cruises,
a correlation coefficient of 0.87 were calculated. This is a satisfactory result, taking the
strong concentration of cruise data in the belt from the mouth of the Vistula River in the
northwest direction into account. Thus, the data come both from the area where there
is mixing of river waters (from the Vistula River) with the waters of the Gulf and from
the area where the strongest currents occur in the entire domain (the belt along the Hel
Peninsula). It should also be noted that most of these data came from fishing depths, i.e., 30
to 60 m, where the impact of SST satellite data assimilation is no longer visible.

The correlation of the model results for salinity with the ICES data at the level of 0.94
and the low root mean square error of 0.8 PSU suggest that the model copes well with the
transport of water masses. It also proves that the rivers in the model have been correctly
implemented and that the outgoing freshwater is correctly mixed with the saltwater of
the Gulf and distributed by currents in its area. Additionally, when analyzing the vertical
profile (Figure 8), both the isohaline layer and the formation of a halocline at lower depth
levels can be seen, which proves that the model correctly reflects the dynamics of salinity
changes in the water column.

When analyzing the seven-year simulation period of the EcoFish model (from January
2014 to December 2020), it can be observed that the temperature of the Gulf of Gdańsk
waters is subject to strong seasonal changes and depends mainly on changes in air temper-
ature and solar radiation. They are also largely influenced by convection processes and
wind-induced mixing. The changes in the water temperature of the Gulf also show the
influence of the Vistula River, whose waters increase the temperature in the Gulf in spring
and summer and lower it in autumn. The lowest values of surface water temperature
occur in January and remain at the level of about 0.1 ◦C (Table A2). On the other hand,
the lowest average values of surface water temperature in the entire domain occur in
February (Table A1). During this month, the surface waters of the entire reservoir are
characterized by a similar temperature, and the differences do not exceed 2.5 ◦C. In the
following months, the temperature of surface waters increases (the fastest in the coastal
zone). The highest spatial differentiation is observed in the model results for May and June
(differences amounting to about 7 ◦C). The highest average surface water temperatures
occur in August (Table A1).

The location of the Gulf of Gdańsk and its specific bottom topography favor the occur-
rence of salinity diversification. Significant differences in its distribution occur between
the shallow coastal area and the deeper part of the Gulf, which resembles the waters
with a layered structure typical of the Baltic Sea (with the presence of a halocline and a
thermocline). The shallow-water coastal zone of the Gulf of Gdańsk is influenced by fresh
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waters entering it from rivers and other types of surface runoff. The Vistula River has
the greatest impact on changes in salinity, with huge volumes of fresh water flowing out
(average flow exceeding 1000 m3/s), causing local salinity drops below 7 PSU. Its influence
is also noticeable in the surface layer of the deep-water part of the Gulf of Gdańsk, mainly
in the spring season, when, due to currents, river waters mix with sea waters and are
carried into the Gulf.

When analyzing the distribution of currents in the studied domain, a characteristic
area can be distinguished, stretching along the Hel Peninsula. The strongest surface
currents occur there, often exceeding 20 cm·s−1. Two directions dominate there, depending
on the season. Northwestern currents are mainly observed in the model results for the
summer months, pushing the water from the Gdańsk Basin toward the open sea and are
accompanied by the formation of coastal upwelling and downwelling. In the remaining
months, southeastern currents predominate in this region, carrying waters toward the inner
Gulf of Gdańsk. The distribution of surface currents around the mouth of the Vistula is
also peculiar, where the most common is the eastern current, which distributes the waters
flowing out of the Vistula along the shore of the Gulf. Its long-term presence limits the
spread of the Vistula waters and reduces the zone of mixing fresh water with sea water. HP
and VR regions are two specific regions along the Polish coastline where coastal up- and
downwelling events occurs. This is induced by several factors, which the most important
are the dominating westerly winds [30], bathymetry and vicinity of the coastal formation.
In the HP region, in addition, the large-scale circulation of the Baltic Sea with the surface
current pushing waters along the Hel Peninsula into the Gulf of Gdańsk [31] is responsible
for the currents distribution.

The factor that has the greatest impact on changes in the sea surface height is wind.
Certain areas can be distinguished with the greatest variation in the SSH. These are coastal
areas, in particular around the Hel Peninsula, the southern coast stretching from the
Bay of Puck, along the Vistula Spit, as well as the eastern shore of the Gulf of Gdańsk
(Figures A5 and A6).

6. Conclusions

In this paper, we present a numerical model of the Gulf of Gdańsk EcoFish model with
an active module of satellite data assimilation for surface temperature. This version of the
EcoFish model is being developed and used within the framework of the project “FindFish
Knowledge Transfer Platform—Numerical Forecasting System for the Marine Environment
of the Gulf of Gdańsk for Fisheries”. EcoFish is the basic element of the platform that
provides fishermen and scientists with the current and forecast hydrodynamic, chemical,
and biological conditions of the Gulf of Gdańsk. It also produces forecasts determining
the most favorable environmental conditions for the occurrence of industrial pelagic
fish in the South Baltic region. The aim of this research and development project is to
increase the intensity of knowledge transfer and the use of scientific potential by fishermen,
and consequently contribute to the sustainable development of sea fisheries and increase
the protection of the Gulf of Gdańsk ecosystem.

To verify the correctness of the EcoFish model, a statistical analysis was carried out by
comparing the model results with the in situ observations for the simulation period from
January 2014 to December 2020. Satisfactory results were obtained and the compliance
of the model results for water temperature and salinity with the available observations
was confirmed. Correct mapping of the physical conditions inside the domain allows the
model to be used for further simulations with an active part of the ecosystem. To do this, it
is required to have a model that correctly simulates the physical conditions of mixing in a
water body and heat exchange, controlling the heating and cooling of water masses. This is
of great importance for the simulation of biochemical factors and the primary production
process that will be conducted by the biochemical part of the EcoFish model.

The decision to validate the model for water temperature and salinity resulted from
the fact that these two parameters serve as input data for the Fish Module, in which the
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Habitat Suitability Index maps are determined based on the environmental preferences of
fish. The final product of the project will be sharing the FindFish platform as a website that
will provide all the results and forecasts in operational mode.
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Appendix A

In the main part of the article, there are only figures presenting the monthly averages
and averaged statistical values of validation. Detailed maps for separate months, years,
and statistics have been moved to the Appendix section.
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Appendix A.1. Surface Temperature

Figure A1. Monthly means for surface temperature from January to June for the years 2014–2020.

Figure A2. Monthly means for surface temperature from July to December for the years 2014–2020.
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Table A1. Monthly means for surface temperature for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 4.62 2.48 3.43 6.17 10.36 14.02 19.02 19.56 16.39 12.44 8.77 5.33
2015 4.09 3.48 3.92 5.28 9.11 13.84 16.94 18.52 16.36 12.13 7.85 7.22
2016 4.48 4.08 4.02 5.90 11.34 15.69 18.16 18.67 17.88 11.34 8.02 5.62
2017 3.85 3.34 3.61 5.12 9.52 13.58 16.46 18.12 16.21 12.42 8.94 6.16
2018 4.71 3.17 2.05 4.98 12.08 16.86 19.32 21.23 18.13 13.29 9.45 6.17
2019 4.28 3.66 3.84 6.10 9.20 17.28 17.74 19.47 16.58 12.92 9.70 7.05
2020 5.45 4.85 4.90 6.19 9.11 14.77 17.89 19.68 17.18 13.30 9.13 7.13

mean 4.50 3.58 3.68 5.68 10.10 15.15 17.93 19.32 16.96 12.55 8.84 6.38

Table A2. Monthly minimums for surface temperature for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 −0.43 −0.43 0.60 1.33 3.28 3.94 9.81 10.81 2.24 2.48 1.29 0.38
2015 0.38 0.14 0.67 1.13 3.77 2.91 7.94 7.62 7.94 2.78 0.89 1.17
2016 −0.40 0.66 0.82 1.54 4.37 2.37 3.17 6.19 8.04 4.18 1.10 0.83
2017 0.05 −0.19 0.46 1.30 2.79 1.82 3.83 10.48 3.41 2.60 2.29 0.64
2018 0.17 −0.38 −0.41 0.74 3.81 5.07 6.39 8.85 7.14 4.49 1.06 0.88
2019 −0.20 0.22 1.30 2.47 2.05 9.74 8.40 13.60 3.70 3.53 2.86 1.27
2020 0.78 1.48 0.81 2.26 4.55 8.09 9.80 13.86 11.22 3.75 1.12 1.33

mean 0.05 0.21 0.60 1.54 3.52 4.85 7.05 10.20 6.24 3.40 1.52 0.93

Table A3. Monthly maximums for surface temperature for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 6.75 6.44 9.42 16.51 20.22 21.08 28.45 26.47 23.56 15.56 11.78 7.73
2015 5.46 5.12 10.47 18.06 20.32 21.15 23.96 24.50 21.87 16.71 11.50 8.85
2016 7.42 6.71 11.78 14.77 20.19 24.40 24.23 22.58 20.85 17.05 10.60 8.50
2017 6.23 4.83 8.84 10.54 20.79 21.35 22.15 23.60 23.60 15.78 11.84 8.76
2018 6.87 4.71 9.13 16.41 23.02 22.86 27.26 26.69 22.32 16.65 11.92 8.29
2019 5.95 4.73 7.88 15.25 18.93 25.85 25.48 24.43 23.35 15.29 12.48 9.65
2020 6.95 5.84 7.54 15.04 17.19 25.16 28.31 26.66 20.53 18.24 12.45 9.46

mean 6.52 5.48 9.29 15.22 20.09 23.12 25.69 24.99 22.30 16.47 11.80 8.75

Table A4. Monthly standard deviations for surface temperature for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 1.41 0.50 0.81 2.01 2.89 1.94 2.35 2.11 1.58 1.52 1.42 0.98
2015 0.59 0.50 0.53 1.26 1.74 1.65 1.22 1.55 1.26 2.24 1.65 0.75
2016 1.14 0.45 0.55 0.97 2.18 2.27 1.65 0.98 1.34 2.58 1.02 1.29
2017 1.10 0.64 0.63 0.79 3.04 1.69 1.43 0.72 1.03 1.49 1.16 1.06
2018 0.79 0.82 0.49 1.83 3.11 1.53 2.71 1.76 1.50 1.47 1.65 0.94
2019 0.84 0.48 0.36 1.50 1.90 2.36 1.42 0.84 2.12 1.08 1.16 0.85
2020 0.79 0.42 0.34 1.02 1.22 2.99 1.03 1.21 0.80 1.72 1.58 1.08

mean 0.95 0.54 0.53 1.34 2.30 2.06 1.69 1.31 1.37 1.73 1.38 0.99
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Appendix A.2. Bottom Temperature

Table A5. Monthly means for bottom temperature for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 4.90 4.19 4.41 4.76 5.26 6.26 6.39 7.21 6.81 6.51 6.06 5.39
2015 4.78 4.52 4.68 5.10 6.04 7.08 7.99 7.34 6.95 6.55 6.31 6.13
2016 5.21 4.88 4.92 5.42 6.17 6.60 7.82 8.29 7.68 6.58 6.54 5.82
2017 5.08 4.95 4.93 5.38 5.84 7.47 7.78 7.71 7.62 7.26 6.50 5.49
2018 4.92 4.42 4.26 4.78 5.35 6.09 7.05 7.57 7.50 7.13 5.77 5.23
2019 4.72 4.69 4.79 5.22 5.93 6.64 8.31 7.66 8.01 7.42 6.37 5.72
2020 5.15 4.99 5.01 5.37 6.17 6.65 8.13 7.90 8.16 7.08 6.53 6.08

mean 4.97 4.66 4.71 5.15 5.82 6.68 7.64 7.67 7.53 6.93 6.30 5.69

Table A6. Monthly standard deviations for bottom temperature for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 0.94 1.27 0.81 0.84 1.77 3.44 4.09 5.08 3.98 2.73 1.50 0.76
2015 0.87 1.01 0.75 0.68 1.80 3.32 4.63 4.38 3.55 2.46 1.30 0.78
2016 1.15 0.84 0.78 0.65 1.80 2.90 4.47 5.10 4.65 2.40 1.10 0.95
2017 1.41 1.44 1.22 0.69 1.61 3.51 4.13 4.51 4.15 2.98 1.71 0.87
2018 0.63 0.96 1.22 0.93 1.98 3.67 5.03 6.06 5.40 3.96 2.15 0.85
2019 0.86 1.02 0.82 0.75 1.45 3.21 4.82 4.57 4.37 3.22 1.85 0.82
2020 0.54 0.35 0.28 0.64 1.77 2.87 5.00 4.94 4.66 2.78 1.43 0.79

mean 0.91 0.98 0.84 0.74 1.74 3.27 4.59 4.95 4.39 2.93 1.58 0.83

Table A7. Monthly minimums for bottom temperature for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 −0.43 −0.43 0.99 2.26 3.53 3.77 3.88 4.05 4.24 4.35 1.84 0.47
2015 0.80 0.41 1.22 1.87 4.37 4.37 4.43 4.47 4.62 3.08 1.51 1.77
2016 −0.40 1.44 1.62 2.68 4.35 4.30 4.05 4.45 4.65 4.74 1.98 1.12
2017 0.27 −0.05 0.94 2.38 3.39 4.56 4.27 4.38 3.99 3.73 2.99 0.92
2018 0.33 −0.24 −0.40 1.03 3.42 3.49 3.52 3.70 3.86 3.98 1.92 1.24
2019 0.03 0.25 1.98 2.84 3.06 4.56 4.51 4.51 4.89 4.82 3.52 2.28
2020 1.24 1.76 2.07 3.17 4.81 4.76 4.83 4.89 4.86 4.49 2.40 2.30

mean 0.26 0.45 1.20 2.32 3.85 4.26 4.21 4.35 4.44 4.17 2.31 1.44

Table A8. Monthly maximums for bottom temperature for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 7.19 5.86 7.41 12.37 18.76 19.77 25.34 24.42 18.87 14.89 11.43 7.68
2015 6.58 5.68 6.23 10.89 14.08 17.64 20.52 22.49 19.11 15.60 10.82 8.79
2016 7.64 6.38 6.74 9.61 16.64 21.21 21.84 21.04 20.03 16.70 10.41 8.15
2017 6.60 6.49 6.88 8.48 17.38 18.80 19.87 20.31 19.14 15.30 11.05 8.98
2018 6.47 5.63 6.07 11.31 19.19 21.40 24.05 25.44 19.91 16.78 11.57 8.27
2019 7.13 6.79 6.80 12.44 14.78 22.47 21.71 21.74 22.23 15.13 12.00 8.72
2020 7.00 6.02 6.21 10.62 14.20 22.29 22.17 22.65 20.55 16.63 11.90 9.12

mean 6.94 6.12 6.62 10.82 16.43 20.51 22.21 22.58 19.98 15.86 11.31 8.53
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Appendix A.3. Surface Salinity

Figure A3. Monthly means for surface salinity from January to June for the years 2014–2020.

Figure A4. Monthly means for surface salinity from July to December for the years 2014–2020.
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Table A9. Monthly means for surface salinity for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 7.71 7.76 7.52 7.31 7.36 7.40 7.35 7.35 7.40 7.46 7.51 7.59
2015 7.67 7.65 7.50 7.52 7.47 7.46 7.43 7.39 7.39 7.50 7.54 7.58
2016 7.67 7.66 7.45 7.35 7.40 7.37 7.40 7.38 7.38 7.57 7.58 7.61
2017 7.67 7.66 7.49 7.40 7.40 7.45 7.41 7.35 7.35 7.47 7.54 7.56
2018 7.63 7.60 7.45 7.39 7.35 7.37 7.38 7.38 7.39 7.47 7.50 7.55
2019 7.61 7.61 7.54 7.35 7.42 7.37 7.44 7.35 7.40 7.42 7.47 7.55
2020 7.59 7.65 7.52 7.46 7.44 7.33 7.40 7.36 7.35 7.43 7.47 7.53

mean 7.65 7.66 7.50 7.40 7.40 7.39 7.40 7.37 7.38 7.48 7.51 7.57

Table A10. Monthly minimums for surface salinity for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 4.25 3.08 1.51 1.67 2.74 3.71 4.09 4.47 4.44 4.73 4.79 4.15
2015 3.27 2.73 1.99 2.40 3.13 3.92 3.96 4.37 4.24 4.92 4.70 4.00
2016 3.67 3.07 2.10 1.64 2.63 3.54 4.15 4.43 4.12 4.98 4.53 3.88
2017 3.50 2.92 1.92 1.72 2.81 3.85 4.03 4.01 4.23 4.97 4.62 3.50
2018 3.57 2.70 1.93 2.13 2.62 3.38 3.85 4.09 4.28 4.83 4.03 3.74
2019 3.64 2.59 1.89 1.72 2.55 3.57 4.13 4.27 4.60 4.55 4.46 3.01
2020 3.48 3.05 1.78 2.08 2.52 3.33 4.24 4.09 4.23 4.61 4.11 3.81

mean 3.62 2.88 1.87 1.91 2.72 3.61 4.06 4.25 4.31 4.80 4.46 3.73

Table A11. Monthly maximums for surface salinity for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 8.65 8.70 7.98 7.77 7.75 7.67 7.66 7.55 7.70 7.81 8.15 8.15
2015 8.06 8.26 7.96 7.81 7.76 7.67 7.72 7.95 7.71 8.33 7.90 7.96
2016 8.32 8.02 7.85 7.76 7.75 7.73 7.63 7.56 7.71 8.56 7.86 7.91
2017 8.32 8.18 7.88 7.77 7.78 7.71 7.71 7.53 7.74 7.98 7.80 7.91
2018 8.70 7.95 8.00 7.89 7.75 7.63 7.62 7.62 7.68 7.77 8.65 8.66
2019 7.96 7.88 7.87 7.82 7.75 7.65 7.72 7.56 7.61 7.61 8.23 7.95
2020 7.89 7.93 7.99 7.81 7.78 7.66 7.68 7.67 7.58 7.78 7.74 8.16

mean 8.27 8.13 7.93 7.80 7.76 7.67 7.68 7.63 7.68 7.98 8.05 8.10

Table A12. Monthly standard deviations for surface salinity for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 0.29 0.46 0.57 0.70 0.50 0.35 0.32 0.24 0.25 0.22 0.25 0.29
2015 0.36 0.45 0.57 0.49 0.46 0.37 0.30 0.26 0.27 0.22 0.24 0.30
2016 0.35 0.44 0.60 0.64 0.53 0.37 0.28 0.26 0.27 0.22 0.24 0.29
2017 0.37 0.40 0.65 0.65 0.54 0.37 0.32 0.28 0.26 0.20 0.27 0.35
2018 0.39 0.56 0.62 0.64 0.57 0.39 0.32 0.26 0.26 0.21 0.29 0.35
2019 0.42 0.50 0.55 0.64 0.53 0.40 0.29 0.29 0.23 0.24 0.28 0.34
2020 0.40 0.43 0.62 0.63 0.52 0.43 0.30 0.33 0.37 0.30 0.35 0.35

mean 0.37 0.47 0.60 0.63 0.52 0.38 0.30 0.28 0.27 0.23 0.27 0.32
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Appendix A.4. Bottom Salinity

Table A13. Monthly means for bottom salinity for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 9.46 9.72 9.47 9.64 9.70 9.55 9.63 9.55 9.61 9.62 9.67 9.57
2015 9.24 9.45 9.53 9.39 9.58 9.58 9.52 9.64 9.63 9.63 9.39 9.40
2016 9.56 9.35 9.49 9.60 9.64 9.63 9.52 9.51 9.63 9.70 9.43 9.24
2017 9.25 9.49 9.36 9.48 9.65 9.50 9.50 9.57 9.54 9.39 9.34 9.38
2018 9.59 9.47 9.60 9.65 9.69 9.60 9.53 9.56 9.55 9.38 9.63 9.60
2019 9.28 9.46 9.31 9.68 9.65 9.64 9.48 9.61 9.48 9.47 9.60 9.51
2020 9.34 9.34 9.35 9.47 9.59 9.61 9.55 9.52 9.50 9.51 9.44 9.48

mean 9.39 9.47 9.44 9.56 9.64 9.59 9.53 9.57 9.56 9.53 9.50 9.45

Table A14. Monthly minimums for bottom salinity for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 5.33 5.49 3.82 3.62 4.02 4.71 5.56 5.45 5.32 5.90 6.69 5.16
2015 5.29 4.12 3.87 3.56 4.38 5 5.16 5.69 5.23 5.79 5.80 5.33
2016 5.10 4.73 3.48 3.50 4.61 4.71 5.25 5.24 5.45 5.72 5.37 5.17
2017 4.95 4.87 3.39 3.04 4.18 4.40 4.89 5.52 5.48 5.81 5.56 4.77
2018 4.84 4.13 4.71 3.66 4.06 4.86 5.20 5.59 5.55 5.86 6.19 5.13
2019 4.70 4.13 3.50 4.34 4.07 4.99 5.30 5.59 5.71 5.64 5.83 4.39
2020 4.66 4.89 3.53 3.67 3.91 4.97 5.36 5.05 4.62 5.44 5.21 5.05

mean 4.98 4.62 3.76 3.63 4.18 4.81 5.25 5.45 5.34 5.74 5.81 5.00

Table A15. Monthly maximums for bottom salinity for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 12.45 12.52 13.04 12.62 12.71 12.62 12.64 12.67 12.61 12.75 12.45 12.82
2015 12.92 12.54 12.99 12.96 12.84 12.77 12.85 12.59 12.62 12.82 13.19 12.82
2016 12.55 12.71 12.61 12.72 12.73 12.62 12.59 12.61 12.76 12.80 12.50 12.83
2017 12.52 12.54 12.59 12.79 12.82 12.70 12.63 12.74 13.15 12.82 12.42 12.44
2018 12.70 12.39 12.59 12.80 12.75 12.70 12.57 12.85 12.85 12.89 12.43 12.51
2019 12.44 12.48 12.80 12.59 12.68 12.61 12.59 12.60 12.74 12.84 12.48 12.93
2020 12.40 12.58 13.21 12.67 12.75 12.81 12.76 12.58 12.59 12.11 11.91 11.40

mean 12.57 12.54 12.83 12.73 12.76 12.69 12.66 12.66 12.76 12.72 12.48 12.54

Table A16. Monthly standard deviations for bottom salinity for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 1.39 1.47 1.59 1.68 1.74 1.74 1.69 1.74 1.66 1.59 1.54 1.62
2015 1.51 1.55 1.57 1.72 1.76 1.75 1.74 1.64 1.67 1.56 1.62 1.60
2016 1.50 1.54 1.60 1.72 1.73 1.68 1.73 1.75 1.68 1.55 1.64 1.61
2017 1.54 1.54 1.61 1.75 1.70 1.75 1.73 1.71 1.71 1.63 1.62 1.63
2018 1.54 1.53 1.51 1.68 1.74 1.74 1.73 1.72 1.70 1.57 1.54 1.59
2019 1.57 1.58 1.64 1.64 1.75 1.72 1.74 1.69 1.70 1.64 1.58 1.62
2020 1.58 1.60 1.56 1.70 1.79 1.72 1.77 1.64 1.60 1.42 1.49 1.33

mean 1.52 1.54 1.58 1.70 1.74 1.73 1.73 1.70 1.67 1.57 1.58 1.57
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Appendix A.5. Sea Surface Height

Figure A5. Monthly means for sea surface height from January to June for the years 2014–2020.

Figure A6. Monthly means for sea surface height from July to December for the years 2014–2020.



Remote Sens. 2021, 13, 3572 34 of 38

Table A17. Monthly means for sea surface height for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 −2.58 −1.27 1.46 0.27 0.14 1.69 0.28 1.93 0.47 −1.21 −2.73 3.20
2015 4.59 1.37 0.37 3.26 1.23 2.00 3.25 −0.29 0.58 −0.76 3.57 4.34
2016 1.35 2.67 0.62 0.98 0.53 0.59 2.44 3.00 1.35 −1.81 1.96 5.54
2017 3.86 0.69 1.57 2.39 0.55 2.20 2.11 1.57 1.75 4.49 2.53 3.88
2018 0.09 −0.11 −1.34 0.22 0.40 1.93 2.23 1.95 3.66 2.41 −1.27 1.30
2019 2.79 2.27 2.84 -0.83 1.32 0.59 3.45 0.78 3.34 2.41 −1.56 3.49
2020 4.20 4.55 1.39 2.28 2.14 1.12 3.38 0.92 1.91 −0.48 2.55 −1.82

mean 2.04 1.45 0.99 1.22 0.90 1.44 2.45 1.41 1.87 0.72 0.72 2.85

Table A18. Monthly minimums for sea surface height for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 −23.84 −13.86 −14.12 −7.34 −15.87 −4.55 −6.76 −9.82 −7.45 −15.93 −15.70 −13.04
2015 −12.53 −13.46 −21.62 −14.91 −12.23 −8.29 −10.68 −14.11 −7.47 −19.00 −29.58 −19.20
2016 −13.14 −16.97 −7.40 −9.86 −5.65 −8.77 −6.39 −5.45 −8.66 −31.09 −16.76 −23.97
2017 −14.86 −16.38 −8.11 −7.56 −10.31 −12.32 −7.46 −8.61 −12.05 −11.56 −9.23 −16.03
2018 −21.75 −16.80 −22.01 −12.01 −9.55 −6.52 −4.71 −7.78 −6.83 −18.41 −16.05 −13.08
2019 −12.71 −13.03 −15.27 −12.87 −11.73 −8.40 −6.49 −6.89 −13.27 −9.23 −15.90 −21.19
2020 −8.80 −9.19 −22.77 −7.21 −4.12 −15.11 −6.59 −5.57 −8.24 −31.79 −7.82 −16.38

mean −15.37 −14.24 −15.90 −10.25 −9.92 −9.14 −7.01 −8.32 −9.14 −19.57 −15.86 −17.55

Table A19. Monthly maximums for sea surface height for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 45.86 13.67 43.37 13.11 8.38 11.86 7.68 18.14 14.61 14.65 6.26 43.04
2015 77.21 30.20 38.32 43.02 20.88 15.22 24.09 9.21 14.85 21.09 51.51 59.79
2016 31.17 45.59 10.15 17.59 18.70 23.84 17.29 14.55 18.14 24.84 31.78 59.41
2017 33.82 29.94 19.70 27.80 19.65 15.75 17.50 15.95 49.66 42.08 28.32 40.60
2018 34.89 11.46 7.89 25.70 14.86 19.77 10.17 27.11 38.23 32.82 10.03 21.01
2019 32.40 20.54 36.61 7.64 16.73 13.90 21.35 8.73 30.37 27.21 15.10 54.94
2020 34.10 37.47 60.19 25.78 14.99 14.54 21.37 8.79 23.26 22.65 24.96 14.91

mean 41.35 26.98 30.89 22.95 16.31 16.41 17.06 14.64 27.02 26.48 23.99 41.96

Table A20. Monthly standard deviations for sea surface height for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 7.61 3.81 5.29 2.35 2.84 2.27 1.90 3.47 2.97 3.34 3.07 6.57
2015 9.46 5.11 4.87 5.81 3.87 2.73 4.63 3.26 3.20 4.67 8.82 8.41
2016 5.94 7.20 2.74 3.83 2.32 3.10 2.77 2.95 2.95 5.52 5.80 7.27
2017 5.56 5.84 4.48 3.66 3.00 4.07 3.09 3.38 5.38 7.14 4.49 6.75
2018 5.73 3.14 4.07 4.71 2.73 2.77 1.80 3.50 5.09 6.18 3.21 4.40
2019 5.46 4.29 6.40 2.99 3.02 2.54 3.39 2.50 5.38 4.75 4.27 7.35
2020 5.36 6.46 6.59 4.48 2.57 3.53 3.73 2.04 3.55 5.07 5.06 4.52

mean 6.45 5.12 4.92 3.97 2.91 3.00 3.04 3.01 4.07 5.24 4.96 6.47
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Appendix A.6. Surface Currents

Figure A7. Monthly means for surface currents from January to June for the years 2014–2020.

Figure A8. Monthly means for surface currents from July to December for the years 2014–2020.
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Figure A9. Rose of sea currents in the bottom layer of the Gdańsk Deep—monthly averages.

Table A21. Monthly means for surface currents for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 8.98 5.02 5.48 4.94 6.33 6.25 7.88 6.78 7.39 6.18 5.72 7.18
2015 8.43 6.76 5.87 6.56 6.23 5.69 7.10 9.13 7.12 8.18 8.71 7.86
2016 7.41 6.95 4.91 5.97 6.03 8.83 6.76 5.90 6.98 9.31 7.72 8.43
2017 7.84 6.97 4.90 5.58 6.11 7.75 6.65 6.52 6.83 8.78 7.12 8.08
2018 7.18 4.80 6.23 5.66 5.59 6.91 5.34 6.39 6.61 7.32 6.40 5.88
2019 7.41 6.42 6.72 6.14 5.78 7.20 7.40 6.05 7.53 5.82 6.32 7.02
2020 7.52 8.20 6.25 5.34 5.49 5.96 5.88 6.13 5.54 6.82 6.30 6.94

mean 7.82 6.44 5.77 5.74 5.94 6.94 6.72 6.70 6.86 7.49 6.90 7.34

Table A22. Monthly maximums for surface currents for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 77.33 27.82 74.57 36.57 44.93 37.04 30.96 38.19 45.39 43.46 48.85 78.88
2015 120.09 60.55 90.82 77.49 48.70 27.68 70.34 56.30 46.57 52.13 84.40 89.04
2016 55.58 73.70 29.52 48.28 53.90 56.06 55.10 39.51 37.75 77.81 81.79 104.45
2017 60.38 66.74 46.19 70.15 46.20 50.08 38.65 28.88 51.69 67.66 57.29 84.60
2018 70.18 31.45 52.83 45.94 25.20 45.54 42.67 52.24 51.98 67.29 52.96 52.90
2019 70.52 38.52 72.50 33.80 51.43 33.49 44.28 26.03 55.87 51.12 42.51 51.77
2020 58.32 72.23 70.19 63.05 37.54 30.77 33.34 28.82 29.95 64.21 57.21 43.93

mean 73.20 53.00 62.37 53.61 43.98 40.10 45.05 38.57 45.60 60.53 60.71 72.22
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Table A23. Monthly standard deviations for surface currents for the years 2014–2020.

Year\Month January February March April May June July August September October November December

2014 7.95 3.60 5.60 3.44 4.97 4.43 5.24 4.95 5.31 4.33 4.63 6.12
2015 8.72 5.73 5.66 6.20 4.32 3.60 5.72 6.91 5.07 6.28 7.85 6.20
2016 5.83 6.12 3.47 4.30 4.74 6.60 5.23 4.08 5.02 7.87 6.30 7.41
2017 6.18 5.97 4.00 5.04 4.38 5.49 4.89 4.47 5.40 6.95 5.27 6.73
2018 6.20 3.82 5.45 4.12 3.71 4.96 3.88 4.69 4.76 6.11 5.46 4.60
2019 5.97 4.27 5.61 4.18 4.14 5.02 5.56 4.03 6.04 4.17 4.73 5.17
2020 5.15 6.56 5.23 4.81 3.95 4.11 4.07 4.35 3.85 5.81 5.10 5.05

mean 6.57 5.15 5.00 4.59 4.32 4.89 4.94 4.78 5.06 5.93 5.62 5.90

References
1. Matthäus, W.; Franck, H. Characteristics of major Baltic inflows—A statistical analysis. Cont. Shelf Res. 1992, 12, 1375–1400.

[CrossRef]
2. Fischer, H.; Matthäus, W. The importance of the Drogden Sill in the Sound for major Baltic inflows. J. Mar. Syst. 1996, 9, 137–157.

[CrossRef]
3. Kowalkowski, T.; Pastuszak, M.; Igras, J.; Buszewski, B. Differences in emission of nitrogen and phosphorus into the Vistula and

Oder basins in 1995–2008—Natural and anthropogenic causes (MONERIS model). J. Mar. Syst. 2012, 89, 48–60. [CrossRef]
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8. Woźniak, B.; Bradtke, K.; Darecki, M.; Dera, J.; Dudzińska-Nowak, J.; Dzierzbicka-Głowacka, L.; Ficek, D.; Furmańczyk, K.;
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